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Note on the analytic representation of integer residues 

 

 

Summary: We consider a general identity regarding the analytic representation of integer 

remainders modulo p. 

 

 

Zusammenfassung: Wir betrachten eine allgemeingültige Identität zur analytischen 

Darstellung ganzzahliger Reste modulo p. 

 

 

By Hieronymus Fischer 

 

1. Introduction 

Most commonly, the arithmetic operation ‘mod’ is used to describe the integer residue r  of the 

division n  by 2; in symbols, mod 2r n . Therein, the modulo-operation is defined generally by 

mod :
n

n p n p
p

 
   

 
, p . Nevertheless, for the special case 2p  , sometimes one finds a 

seemingly more elegant exponential notation according to  

 

(1-1) 
 1 1

mod 2
2

n

n
 

  

The question is, whether or not this formula can be extended to integer divisors 2p  . 

2. Main section 

In the following we answer in the affirmative: we show, that there exists a general analytic 

representation of integer remainders with divisors 2p  which goes into formula (1-1) for 2p . 

Theorem 2-1 

Suppose n  and p ; further let 

2

:
i

p

p e



   be the p-th primitive root of unity. Then 

mod ( )pn p M n , where the function : p pM   is defined by  

 

(2-1)  
11

1 1,

1
( ) : 1

n pp
p n

p pM n
p



   


 




  


    

 

Proof:  

Since n  appears as an exponent of 

2
i

p

p e



   only, and so is always a linear argument of the 

appropriate exponential terms, namely of 







i

p

2
exp , it is clear, that ( )pM n  is periodically with 

period p . Hence, it suffices to verify ( )pM n n  for 0,1, 2, , 1n p  . Since 1o

p  , this holds 
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true for 0n  , obviously. Suppose 0 n p   now, then the product  
1

1,

1
p

n

p



  






 

  evaluates to 

zero if and only if n   for one index at least. The latter is evidently true, if n  . Conversely, the 

product does not vanish, if and only if n  . Given an index n , 0 n p  , it follows that the very 

only summand of  
11

1 1,

1
pp

n

p



   

 




  

   which is different from zero is that with index n  . Thus, 

we get    
1

1,

( ) 1 1
p

n n

p p p

n

n
M n

p



 

 




 

   . As can be easily seen, all terms  1 p

 , 1 p  , 

appears exactly once. Therefore, we can rewrite this formula as  
1

1

( ) 1
p

p p

n
M n

p










  .  

Since the terms p

 , 0 p   are just the roots of unity of order p , they are also the roots of the 

cyclotomic polynomial 1pX  , i.e.,      
1 1

0 1

1 1
p p

p

p pX X X X 

 

 
 

 

       . It follows 

 
1

2 1

1

1
1

1

pp
p

p

X
X X X X

X













      


 , so that  

1

1

1
p

p p








  . Subsequently we 

obtain ( )pM n n  for all n , 0 n p  .  

 

Based on Theorem 2-1 we are now able to represent the digits 
1 1 0m m na a a a a

 of a given non-

negative number z  in a very explicit manner; only provided, the radix p  is a prime number. In fact, 

according to Theorem 4 1 of References [1] and Theorem 2-1 we obtain the following fairly 

sophisticated relation  

 

11

1 1,

1
1

n

n

z

z
p pp

p p

n p pa
p



   


  

 
 

  
   

 
  

  

 
   

  
 

   

 

This representation looks nice. Granted, but it also comes across somewhat academically. It is stated 

here for the sake of completeness only. 

 

If we set 2p  , then formula (2-1) is identical to the well known formula (1-1). However, for higher 

p  the formulae become more complex. Two examples: 

3p  , ie
i

3
2
1

2
13

2

3 



  

(2-2)     2 13
3 3

1
mod 3 1 2 1

3

n
n nn


  

     

 

Of course, this can also be written in a non-canonical way; for example: 

 

(2-3)   23
3 3

1
mod 3 3 1

3

n
nn


 


    

 

or  
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(2-4)   3
3

3

mod 3 1 1
1

n
nn






 
   

 
 

 

4p  , ie
i

 2
4



  

(2-5) 

            

4

2 3 1 3 1 2

4 4 4 4 4 4

1
mod 4

4

1 1 2 1 1 3 1 1

n

n n n n n n

n


          


 

       

 

 

A more compact form of this is given by: 

 

(2-6)     
1

mod 4 1 ( 1) 2 3
2

n
n ni

n i i i


       

 

 

If we put a real variable x  instead of n  and consider the function , we get an interesting 

mapping of the interval 0 x p   into the complex plane. Since  is plainly periodic, the 

evolving functional mapping results in a closed curve. For p>1 these curves look like  1p  -fold 

intertwined circles; putting p=3, for example, we get a curve very similar to a cycloid (s. figures).  
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Indeed, pM  can be viewed as a mapping of the unity circle. If we set : x

pX   (principal value), 

formally, and consider  
1

1

1,

1
p

p

p p

 

  

 




 

  , we obtain 

 

(2-7) 

 

   

11

1 1,

11
1

1 1,

1
( ) :

1
1

pp

p p p

pp
p

p p

X
M X X

p

X
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With respect to 

1

1 1

p

p

p

p



 









  we finally get 

 

(2-8) 
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X
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Therewith we have demonstrated that pM  is a polynomial in X of degree 1p  .  

 

The functional mapping of the real part of  has a characteristic shape too. There are always 

1p   local maxima which is a consequence of the trigonometric structure of  Re ( )pM x . With 

appropriate constants , , 1b c p    , independent from p ,  Re ( )pM x  can be written as  

 

   1 1 2 2 1 1

2 2 2
sin 1 sin 2 sinp p p pb p x c b p x c b x c

p p p

  
   

     
            

     
 

 

The functional mappings of  Re ( )pM x  for p=2, 3, 4 and 5 are depicted below. 
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Besides, the underlying approach presented in Theorem 2-1 can also be generalized into another 

direction. Suppose, g  is a mapping defined for arguments 0 n p  . Then, g  can be extended to a 

function g  defined on , by simply putting  ( ) : modg n g n p . Evidently, g  is periodic with 

period p . Clearly, g  can be understood as ‘the natural periodic continuation’ of g . Now, we define 

 

(2-9)  
11

( )

0 0,

1
( ) : ( ) 1

pp
g n

p pM n g
p



   

 




  

    

 

It can be easily verified, that )()( nM g

p  and ))(( nMg p  are identical for 0 n p  , which implies 

follows 
( )( ) ( )g

pg n M n  for all n  by definition. Thus, it is evident, that
)(g

pM  also identifies the 

canonical periodic continuation of g  from p  to .  
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