Note on the analytic representation of integer residues

Summary: We consider a general identity regarding the analytic representation of integer remainders modulo p.

Zusammenfassung: Wir betrachten eine allgemeingültige Identität zur analytischen Darstellung ganzzahliger Reste modulo p.

By Hieronymus Fischer

1. Introduction

Most commonly, the arithmetic operation 'mod' is used to describe the integer residue r of the division n by 2 ; in symbols, $r=n \bmod 2$. Therein, the modulo-operation is defined generally by $n \bmod p:=n-p\left\lfloor\frac{n}{p}\right\rfloor, p \in \mathbb{N}$. Nevertheless, for the special case $p=2$, sometimes one finds a seemingly more elegant exponential notation according to

$$
\begin{equation*}
n \bmod 2=\frac{1-(-1)^{n}}{2} \tag{1-1}
\end{equation*}
$$

The question is, whether or not this formula can be extended to integer divisors $p>2$.

2. Main section

In the following we answer in the affirmative: we show, that there exists a general analytic representation of integer remainders with divisors $p \geq 2$ which goes into formula (1-1) for $p=2$.

Theorem 2-1

Suppose $n \in \mathbb{Z}$ and $p \in \mathbb{N}$; further let $\varepsilon_{p}:=e^{\frac{2 \pi}{p} i}$ be the p-th primitive root of unity. Then $n \bmod p=M_{p}(n)$, where the function $M_{p}: \mathbb{Z} \rightarrow \mathbb{Z}_{p}$ is defined by

$$
\begin{equation*}
M_{p}(n):=\frac{1-\varepsilon_{p}^{n}}{p} \sum_{v=1}^{p-1} v \prod_{\mu=1, \mu \neq v}^{p-1}\left(1-\varepsilon_{p}^{n-\mu}\right) \tag{2-1}
\end{equation*}
$$

Proof:
Since n appears as an exponent of $\varepsilon_{p}=e^{\frac{2 \pi}{p} i}$ only, and so is always a linear argument of the appropriate exponential terms, namely of $\exp \left(\frac{2 \pi}{p} i\right)$, it is clear, that $M_{p}(n)$ is periodically with period p. Hence, it suffices to verify $M_{p}(n)=n$ for $n=0,1,2, \ldots, p-1$. Since $\varepsilon_{p}^{o}=1$, this holds
true for $n=0$, obviously. Suppose $0<n<p$ now, then the product $\prod_{\mu=1, \mu \neq \nu}^{p-1}\left(1-\varepsilon_{p}^{n-\mu}\right)$ evaluates to zero if and only if $\mu=n$ for one index at least. The latter is evidently true, if $v \neq n$. Conversely, the product does not vanish, if and only if $v=n$. Given an index $n, 0<n<p$, it follows that the very only summand of $\sum_{v=1}^{p-1} v \prod_{\mu=1, \mu \neq v}^{p-1}\left(1-\varepsilon_{p}^{n-\mu}\right)$ which is different from zero is that with index $v=n$. Thus, we get $M_{p}(n)=\frac{n}{p}\left(1-\varepsilon_{p}^{n}\right) \prod_{\mu=1, \mu \neq n}^{p-1}\left(1-\varepsilon_{p}^{n-\mu}\right)$. As can be easily seen, all terms $\left(1-\varepsilon_{p}^{\mu}\right), 1 \leq \mu<p$, appears exactly once. Therefore, we can rewrite this formula as $M_{p}(n)=\frac{n}{p} \prod_{\mu=1}^{p-1}\left(1-\varepsilon_{p}^{\mu}\right)$.
Since the terms $\varepsilon_{p}^{\mu}, 0 \leq \mu<p$ are just the roots of unity of order p, they are also the roots of the cyclotomic polynomial $X^{p}-1$, i.e., $X^{p}-1=\prod_{\mu=0}^{p-1}\left(X-\varepsilon_{p}^{\mu}\right)=(X-1) \prod_{\mu=1}^{p-1}\left(X-\varepsilon_{p}^{\mu}\right)$. It follows $\prod_{\mu=1}^{p-1}\left(X-\varepsilon_{p}^{\mu}\right)=\frac{X^{p}-1}{X-1}=1+X+X^{2}+\ldots+X^{p-1}$, so that $\prod_{\mu=1}^{p-1}\left(1-\varepsilon_{p}^{\mu}\right)=p$. Subsequently we obtain $M_{p}(n)=n$ for all $n, 0 \leq n<p$.

Based on Theorem 2-1 we are now able to represent the digits $a_{m} a_{m-1} \ldots a_{n} \ldots a_{1} a_{0}$ of a given nonnegative number z in a very explicit manner; only provided, the radix p is a prime number. In fact, according to Theorem 41 of References [1] and Theorem 2-1 we obtain the following fairly sophisticated relation

$$
a_{n}=\frac{1-\varepsilon_{p}^{\binom{z}{p^{n}}}}{p} \sum_{v=1}^{p-1} v \prod_{\mu=1, \mu \neq v}^{p-1}\left(1-\varepsilon_{p}^{-\mu} \varepsilon_{p}^{\binom{z}{p^{n}}}\right)
$$

This representation looks nice. Granted, but it also comes across somewhat academically. It is stated here for the sake of completeness only.

If we set $p=2$, then formula (2-1) is identical to the well known formula (1-1). However, for higher p the formulae become more complex. Two examples:
$p=3, \varepsilon_{3}=e^{\frac{2 \pi}{3} i}=-\frac{1}{2}+\frac{1}{2} \sqrt{3} i$

$$
\begin{equation*}
n \bmod 3=\frac{1-\varepsilon_{3}^{n}}{3}\left(\left(1-\varepsilon_{3}^{n-2}\right)+2\left(1-\varepsilon_{3}^{n-1}\right)\right) \tag{2-2}
\end{equation*}
$$

Of course, this can also be written in a non-canonical way; for example:

$$
\begin{equation*}
n \bmod 3=\frac{1-\varepsilon_{3}^{n}}{3}\left(3+\left(1-\varepsilon_{3}^{2}\right) \varepsilon_{3}^{n}\right) \tag{2-3}
\end{equation*}
$$

or

$$
\begin{equation*}
n \bmod 3=\left(1-\varepsilon_{3}^{n}\right)\left(1+\frac{\varepsilon_{3}^{n}}{1-\varepsilon_{3}}\right) \tag{2-4}
\end{equation*}
$$

$p=4, \varepsilon_{4}=e^{\frac{\pi}{2} i}=i$

$$
\begin{align*}
& n \bmod 4=\frac{1-\varepsilon_{4}^{n}}{4} . \tag{2-5}\\
& \left(\left(1-\varepsilon_{4}^{n-2}\right)\left(1-\varepsilon_{4}^{n-3}\right)+2\left(1-\varepsilon_{4}^{n-1}\right)\left(1-\varepsilon_{4}^{n-3}\right)+3\left(1-\varepsilon_{4}^{n-1}\right)\left(1-\varepsilon_{4}^{n-2}\right)\right)
\end{align*}
$$

A more compact form of this is given by:

$$
\begin{equation*}
n \bmod 4=\frac{1-i^{n}}{2}\left((1+i)(-1)^{n}+(2+i) i^{n}+3\right) \tag{2-6}
\end{equation*}
$$

If we put a real variable x instead of n and consider the function $M_{p}(x)$, we get an interesting mapping of the interval $0 \leq x<p$ into the complex plane. Since $M_{p}(x)$ is plainly periodic, the evolving functional mapping results in a closed curve. For $p>1$ these curves look like $(p-1)$-fold intertwined circles; putting $p=3$, for example, we get a curve very similar to a cycloid (s. figures).

Indeed, M_{p} can be viewed as a mapping of the unity circle. If we set $X:=\varepsilon_{p}^{x}$ (principal value), formally, and consider $\prod_{\mu=1, \mu \neq v}^{p-1} \varepsilon_{p}^{-\mu}=(-1)^{p-1} \varepsilon_{p}^{v}$, we obtain

$$
\begin{equation*}
\tilde{M}_{p}(X):=\frac{1-X}{p} \sum_{v=1}^{p-1} v \prod_{\mu=1, \mu \neq V}^{p-1} \varepsilon_{p}^{-\mu}\left(\varepsilon_{p}^{\mu}-X\right) \tag{2-7}
\end{equation*}
$$

$$
=(-1)^{p-1} \frac{1-X}{p} \sum_{v=1}^{p-1} v \varepsilon_{p}^{v} \prod_{\mu=1, \mu \neq v}^{p-1}\left(\varepsilon_{p}^{\mu}-X\right)
$$

With respect to $\sum_{v=1}^{p-1} v \varepsilon_{p}^{v}=\frac{p}{\varepsilon_{p}-1}$ we finally get

$$
\begin{align*}
\tilde{M}_{p}(X) & =\frac{X-1}{p} \sum_{v=1}^{p-1} v \varepsilon_{p}^{v} \prod_{\mu=1, \mu \neq \nu}^{p-1}\left(X-\varepsilon_{p}^{\mu}\right) \\
& =\frac{X-1}{p} \sum_{v=1}^{p-1} v \varepsilon_{p}^{v}\left(X^{p-2}+O\left(X^{p-3}\right)\right) \tag{2-8}\\
& =\frac{X^{p-1}}{\varepsilon_{p}-1}+O\left(X^{p-2}\right)
\end{align*}
$$

Therewith we have demonstrated that \tilde{M}_{p} is a polynomial in X of degree $p-1$.

The functional mapping of the real part of $M_{p}(x)$ has a characteristic shape too. There are always $p-1$ local maxima which is a consequence of the trigonometric structure of $\operatorname{Re}\left(M_{p}(x)\right)$. With appropriate constants $b_{v}, c_{v}, 1 \leq v<p$, independent from $p, \operatorname{Re}\left(M_{p}(x)\right)$ can be written as

$$
b_{p-1} \sin \left(\frac{2 \pi}{p}(p-1) x+c_{p-1}\right)+b_{p-2} \sin \left(\frac{2 \pi}{p}(p-2) x+c_{p-2}\right)+\ldots+b_{1} \sin \left(\frac{2 \pi}{p} x+c_{1}\right)
$$

The functional mappings of $\operatorname{Re}\left(M_{p}(x)\right)$ for $p=2,3,4$ and 5 are depicted below.

Besides, the underlying approach presented in Theorem 2-1 can also be generalized into another direction. Suppose, g is a mapping defined for arguments $0 \leq n<p$. Then, g can be extended to a function \tilde{g} defined on \mathbb{Z}, by simply putting $\tilde{g}(n):=g(n \bmod p)$. Evidently, \tilde{g} is periodic with period p. Clearly, \tilde{g} can be understood as 'the natural periodic continuation' of g. Now, we define

$$
\begin{equation*}
M_{p}^{(g)}(n):=\frac{1}{p} \sum_{v=0}^{p-1} g(v) \prod_{\mu=0, \mu \neq \nu}^{p-1}\left(1-\varepsilon_{p}^{n-\mu}\right) \tag{2-9}
\end{equation*}
$$

It can be easily verified, that $M_{p}^{(g)}(n)$ and $g\left(M_{p}(n)\right)$ are identical for $0 \leq n<p$, which implies follows $\tilde{g}(n)=M_{p}^{(g)}(n)$ for all $n \in \mathbb{Z}$ by definition. Thus, it is evident, that $M_{p}^{(g)}$ also identifies the canonical periodic continuation of g from \mathbb{Z}_{p} to \mathbb{Z}.

References

[1] On the characterization of base-p number representations

